
首頁 > 新聞中心 > 電力技術<
中試控股技術研究院魯工為您講解:電纜損耗介質試驗儀(電科院)
ZSDJS-9510電纜介損測試儀
電纜介損試驗相關標準:
DL/T 1694.6-2020 高壓測試儀器及設備校準規范 第6部分:電力電纜介質損耗測試儀
GB/T 3048.11-2007 電線電纜電性能試驗方法 第11部分:介質損耗角正切試驗
GB/T 3334-1999 電纜紙介質損耗角正切(tgδ)試驗方法(電橋法)
GB/T 5654-2007 液體絕緣材料 相對電容率、介質損耗因數和直流電阻率的測量
GOST 12179-1976 電纜和導線介質損失角正切測定法
簡易讀懂:電纜介損測試儀是做什么?
ZSDJS-9510電纜介損測試儀針對大容量和高電壓容性設備,如高壓電纜(介損tgδ:無限制,電流I:20uA ≤ I ≤ 15A,電壓HV:1KV ≤ HV ≤ 40KV,頻率 f:30Hz≤ f ≤ 300Hz),高壓電機,高壓套管的出廠試驗等,在采用外部大功率試驗變壓器或串聯諧振等外部加壓設備加壓的環境下,進行介損測試。儀器分為手持終端和測試主機兩部分。手持終端與測試主機之間采用2.4G無線通訊方式。可做正接法測試和反接法測試,正接法和反接法的電流測量量程均可達到2uA-15A的超寬范圍。外施高壓不同頻率可自適應測量,范圍可達30Hz-300Hz。
中試控股始于1986年 ? 30多年專業制造 ? 國家電網.南方電網.內蒙電網.入圍合格供應商
ZSDJS-9510高壓電纜介損測試儀主要針對大容量和高電壓容性設備,如高壓電機,高壓套管的出廠試驗,高壓電纜等,在采用外部大功率試驗變壓器或串聯諧振等外部加壓設備加壓的環境下,進行介損測試。儀器分為手持終端和測試主機兩部分。手持終端與測試主機之間采用2.4G無線通訊方式。可做正接法測試和反接法測試,正接法和反接法的電流測量量程均可達到2uA-15A的超寬范圍。外施高壓不同頻率可自適應測量,范圍可達30Hz-300Hz。
特點:
1、7寸彩色液晶顯示工業級電容屏:儀器采用高端電容式觸摸7寸彩色液晶顯示屏,超大顯示界面所有操作步驟中文菜單顯示,每一步都清晰明了。
2、超寬電流量程:正接法和反接法電流測量量程都可以達到20uA-15A的超寬范圍,更大電流可定制。
3、超寬頻率范圍:外施高壓頻率可達30Hz-300Hz的超寬范圍,自適應測量。
4、各種高電壓可定制:外施高壓電壓能夠滿足各種高電壓環境,可根據用戶需求定制。
5、光纖高壓通訊:測試主機高壓采樣與低壓采樣之間采用工業級光纖通訊模塊,在兼顧高低壓之間絕緣性能的同時又能最大程度保障測試數據的精度。
6、獨立手持操作終端:手持終端與測試主機完全隔離采用2.4G無線通訊,整個測試過程中用戶只需在手持終端上操作即可,最大程度保障操作人員的人身安全。
7、鋰電池供電:手持終端、測試主機低壓端、測試主機高壓端,都采用鋰電池供電,充滿電可連續工作8小時以上。
8、U盤存儲:本機存儲的數據可以通過USB接口保存至U盤中。
參數:
1、使用條件:-15℃∽40℃ RH<80%
2、標準電容:tgδ: <0.005%,Cn: 99.78PF
耐壓電壓: 40KV
3、分辨率:介損tgδ: 0.001%,電容量Cx: 0.001pF,頻率f:0.001Hz
4、精度:介損△tgδ:±(讀數*1.0%+0.040%),電容量△C x :±(讀數*1.0%+1.00PF),頻率 △f:±(讀數*1.0%+0.10Hz)
5、測量范圍:介損tgδ無限制,電流I 20uA ≤ I ≤ 15A,電壓HV 1KV ≤ HV ≤ 40KV,頻率f 30Hz≤ f ≤ 300Hz
6、手持終端鋰電池:7800mAh鋰電池
7、充電器:DC12.6V 3000mA
8、顯示方式:7寸800*480彩色液晶顯示屏
9、操作方式:工業級電容觸摸屏
10、手持終端尺寸(mm)270(L)×160(W)×65(H)
11、測試主機尺寸(mm)300(L)×300(W)×600(H)
12、存儲器大小200組,支持U盤數據存儲
13、重量(手持終端)1.5Kg
14、重量(測試主機)23Kg
參考文獻
交聯聚乙烯電纜的介質損耗介紹
現象:電介質在外電場作用下,由于介質電導和介質極化的滯后效應,其內部會有發熱現象,這說明有部分電能已轉化為熱能耗散掉,電纜絕緣介質(XLPE)也不例外。
定義:電介質在電場作用下,在單位時間內因發熱而消耗的能量稱為電介質的損耗功率,即介質損耗(diclectric loss),簡稱為介損。
作用:介質損耗的大小是衡量絕緣介質電性能的一個重要指標。介質損耗不但消耗了電能,而且使絕緣發熱引發熱老化。如果介電損耗較大,甚至會引起介質的過熱而絕緣破壞,所以從這種意義上講,介質損耗越小越好。
形成機理:按照電介質的物理性質通常有三種電介質損耗形式。
(1)漏導損耗:實際使用中的絕緣材料都不是完善的理想的電介質,在外電場的作用下,總有一些帶電粒子會發生移動而引起微弱的電流,這種微小電流稱為漏導電流,漏導電流流經介質時使介質發熱而損耗了電能。這種因電導而引起的介質損耗稱為“漏導損耗”。
對于XLPE電纜,在直流及交流電壓下都存在漏導損耗,通常直流電壓用泄漏電流的大小或絕緣電阻的大小來反映介質的這一損耗情況。
(2)極化損耗:在介質發生緩慢極化時(松弛極化、空間電荷極化等),帶電粒子在電場力的影響下因克服熱運動而引起的能量損耗。
對于XLPE電纜,只有在交流電壓下才存在極化損耗,而且隨著交流頻率的增大,極化損耗通常也增大。
(3)局部放電損耗:通常在固態電介質中由于存在氣隙或油隙,當外施電壓達到一定數值時,氣隙或油隙先放電而產生損耗,這一損耗在交流電壓下要比直流電壓時大的多。
對于XLPE電纜,在直流電壓下,可用泄漏電流的大小來反映電介質的損耗,而在交流電壓下,介質損耗不能單用泄漏電流來表示,通常用介質損耗正切來表示,即在一定的交流電壓下,電纜絕緣所表現出的等效電阻Rg的大小值。
由于交聯聚乙烯電力電纜不推直流耐壓試驗,交流耐壓試驗僅能反映電纜的電介質擊穿特性,不能反映電纜的損耗特性,因此有必要對電力電纜進行介損測量。
本發明公開了一種高壓電纜絕緣老化測試電路及其測試方法,涉及高壓電纜絕測試技術領域,針對現有技術對于高壓電纜系統,諧振耐壓和介損測量所需要的設備體積龐大,現場試驗接線時間過長,技術復雜,測試難度大,難以實現大規模的電纜絕緣測試的技術問題,采用保護電阻、直流電源、示波器、電子開關、以及計算機,所述示波器包括第一示波器和第二示波器等器具進行連接并測試,本發明提供的測試電路結構簡單、連接方便、便于攜帶,具有很好的檢測效果和推廣價值,本發明提供的測試方法易于操作、準確度高,具有良好的使用效果和廣泛的市場前景。
納米是長度計量的最小單位,1納米的長度為1毫米的百萬分之一,納米技術是在1nm-100nm的長度范圍內,直接用構成各種元素及物質的原子、原子團、分子、分子團組裝具有特定功能的材料或具有特別性能產品的高精尖技術。成功的納米技術可應用在電子、化工、軍事等各個領域,世界各國均在研究開發。納米技術(納米原料)應用在絕緣材料中,是將有機相和無機相在納米范圍內復合,增大兩相之間的界面面積,增強粘接力。作為絕緣材料,它是由多種化學原料組成,經科學配制,獨特的理化反應而成的,如果配方及工藝不合理,即使加入一些納米級原料,在品質上也不會有太大提高。
不同的電工設備對絕緣材料性能的要求各有側重,高壓電纜等高壓設備用的絕緣材料要求有高的擊穿性能和低的介質損耗,但現有技術中高壓電纜絕緣材料為了具有高擊穿性能、低介質損耗等多種效果,但難以兼顧韌性、強度等基本性能。
4、繞組升起將壓板撐開。這種損壞往往是因為軸向力過大或存在其端部支撐件強度、剛度不夠或裝配有缺陷。
5、輻向失穩。這種損壞主要是在軸向漏磁產生的輻向電磁力作用下,導致變壓器繞組輻向變形。
6、外繞組導線伸長導致絕緣破損。輻向電磁力企圖使外繞組直徑變大,當作用在導線的拉應力過大會產生*性變形。這種變
形通常伴隨導線絕緣破損而造成匝間短路,嚴重時會引起線圈嵌進、亂圈而倒塌,甚至斷裂。
7、繞組端部翻轉變形。端部漏磁場除軸向分量外,還存在輻向分量,二個方向的漏磁所產生的合成電磁力致使繞組導線向內
翻轉,外繞組向外翻轉。
8、內繞組導線彎曲或曲翹。輻向電磁力使內繞組直徑變小,彎曲是由兩個支撐(內撐條)間導線彎矩過大而產生*性變形的結
果。如果鐵心綁扎足夠緊實及繞組 輻向撐條有效支撐,并且輻向電動力沿圓周方向均布的話,這種變形是對稱的,整個繞組
為多邊星形。然而,由于鐵芯受壓變形,撐條受支撐情況不相同,沿繞組圓 周受力是不均勻的,實際上常常發生局部失穩形
成曲翹變形。
9、引線固定失穩。這種損壞主要由于引線間的電磁力作用下,造成引線振動,導致引線間短路。
高壓試驗變壓器短路故障原因分析:
因變壓器出口短路導致變壓器內部故障和事故的原因很多,也比較復雜,它與結構設計、原材料的質量、工藝水平、運行工
況等因數有關,但電磁線的選用是關鍵。從近幾年解剖變壓基于變壓器靜態理論設計而選用的電磁線,與實際運行時作用在
電磁線上的應力差異較大。
(1)目前各廠家的計算程序中是建立在漏磁場的均勻分布、線匝直徑相同、等相位的力等理想化的模型基礎上而編制的,而事
實上變壓器的漏磁場并非均勻分布, 在鐵軛部分相對集中,該區域的電磁線所受到機械力也較大;換位導線在換位處由于爬
坡會改變力的傳遞方向,而產生扭矩;由于墊塊彈性模量的因數,軸向墊塊不 等距分布,會使交變漏磁場所產生的交變力延
時共振,這也是為什么處在鐵心軛部、換位處、有調壓分接的對應部位的線餅首先變形的根本原因。
(2)抗短路能力計算時沒有考慮溫度對電磁線的抗彎和抗拉強度的影響。按常溫下設計的抗短路能力不能反映實際運行情況,
根據試驗結果,電磁線的溫度對其屈 服極限?0.2影響很大,隨著電磁線的溫度提高,其抗彎、抗拉強度及延伸率均下降,在
250℃下抗彎抗拉強度要比在50℃時下降上,延伸率則下降40%以 上。而實際運行的變壓器,在額定負荷下,繞組平均溫度可
達105℃,zui熱點溫度可達118℃。一般變壓器運行時均有重合閘過程,因此如果短路點一時無法消 失的話,將在非常短的
時間內(0.8s)緊接著承受第二次短路沖擊,但由于受*次短路電流沖擊后,繞組溫度急劇增高,根據GBl094的規定,zui高允
許 250℃,這時繞組的抗短路能力己大幅度下降,這就是為什么變壓器重合閘后發生短路事故居多。
上一篇:電纜介質損耗試驗儀(電科院)
下一篇:電纜介損測試裝置(電科院)
快速跳轉